Search
Items tagged with: encryption
Governments are back on their anti-encryption bullshit again.
Between the U.S. Senate’s “EARN IT” Act, the E.U.’s slew of anti-encryption proposals, and Australia’s new anti-encryption law, it’s become clear that the authoritarians in office view online privacy as a threat to their existence.
Normally, when the governments increase their anti-privacy sabre-rattling, technologists start talking more loudly about Tor, Signal, and other privacy technologies (usually only to be drowned out by paranoid people who think Tor and Signal are government backdoors or something stupid; conspiracy theories ruin everything!).
I’m not going to do that.
Instead, I’m going to show you how to add end-to-end encryption to any communication software you’re developing. (Hopefully, I’ll avoid making any bizarre design decisions along the way.)
But first, some important disclaimers:
- Yes, you should absolutely do this. I don’t care how banal your thing is; if you expect people to use it to communicate with each other, you should make it so that you can never decrypt their communications.
- You should absolutely NOT bill the thing you’re developing as an alternative to Signal or WhatsApp.
- The goal of doing this is to increase the amount of end-to-end encryption deployed on the Internet that the service operator cannot decrypt (even if compelled by court order) and make E2EE normalized. The goal is NOT to compete with highly specialized and peer-reviewed privacy technology.
- I am not a lawyer, I’m some furry who works in cryptography. The contents of this blog post is not legal advice, nor is it endorsed by any company or organization. Ask the EFF for legal questions.
The organization of this blog post is as follows: First, I’ll explain how to encrypt and decrypt data between users, assuming you have a key. Next, I’ll explain how to build an authenticated key exchange and a ratcheting protocol to determine the keys used in the first step. Afterwards, I’ll explore techniques for binding authentication keys to identities and managing trust. Finally, I’ll discuss strategies for making it impractical to ever backdoor your software (and impossible to silently backdoor it), just to piss the creeps and tyrants of the world off even more.
You don’t have to implement the full stack of solutions to protect users, but the further you can afford to go, the safer your users will be from privacy-invasive policing.
(Art by Kyume.)
Preliminaries
Choosing a Cryptography Library
In the examples contained on this page, I will be using the Sodium cryptography library. Specifically, my example code will be written with the Sodium-Plus library for JavaScript, since it strikes a good balance between performance and being cross-platform.
const { SodiumPlus } = require('sodium-plus');(async function() { // Select a backend automatically const sodium = await SodiumPlus.auto(); // Do other stuff here})();
Libsodium is generally the correct choice for developing cryptography features in software, and is available in most programming languages,
If you’re prone to choose a different library, you should consult your cryptographer (and yes, you should have one on your payroll if you’re doing things different) about your design choices.
Threat Modelling
Remember above when I said, “You don’t have to implement the full stack of solutions to protect users, but the further you can afford to go, the safer your users will be from privacy-invasive policing”?
How far you go in implementing the steps outlined on this blog post should be informed by a threat model, not an ad hoc judgment.
For example, if you’re encrypting user data and storing it in the cloud, you probably want to pass the Mud Puddle Test:
1. First, drop your device(s) in a mud puddle.
2. Next, slip in said puddle and crack yourself on the head. When you regain consciousness you’ll be perfectly fine, but won’t for the life of you be able to recall your device passwords or keys.
3. Now try to get your cloud data back.Did you succeed? If so, you’re screwed. Or to be a bit less dramatic, I should say: your cloud provider has access to your ‘encrypted’ data, as does the government if they want it, as does any rogue employee who knows their way around your provider’s internal policy checks.
Matthew Green describes the Mud Puddle Test, which Apple products definitely don’t pass.
If you must fail the Mud Puddle Test for your users, make sure you’re clear and transparent about this in the documentation for your product or service.
(Art by Swizz.)
I. Symmetric-Key Encryption
The easiest piece of this puzzle is to encrypt data in transit between both ends (thus, satisfying the loosest definition of end-to-end encryption).
At this layer, you already have some kind of symmetric key to use for encrypting data before you send it, and for decrypting it as you receive it.
For example, the following code will encrypt/decrypt strings and return hexadecimal strings with a version prefix.
const VERSION = "v1";/** * @param {string|Uint8Array} message * @param {Uint8Array} key * @param {string|null} assocData * @returns {string} */async function encryptData(message, key, assocData = null) { const nonce = await sodium.randombytes_buf(24); const aad = JSON.stringify({ 'version': VERSION, 'nonce': await sodium.sodium_bin2hex(nonce), 'extra': assocData }); const encrypted = await sodium.crypto_aead_xchacha20poly1305_ietf_encrypt( message, nonce, key, aad ); return ( VERSION + await sodium.sodium_bin2hex(nonce) + await sodium.sodium_bin2hex(encrypted) );}/** * @param {string|Uint8Array} message * @param {Uint8Array} key * @param {string|null} assocData * @returns {string} */async function decryptData(encrypted, key, assocData = null) { const ver = encrypted.slice(0, 2); if (!await sodium.sodium_memcmp(ver, VERSION)) { throw new Error("Incorrect version: " + ver); } const nonce = await sodium.sodium_hex2bin(encrypted.slice(2, 50)); const ciphertext = await sodium.sodium_hex2bin(encrypted.slice(50)); const aad = JSON.stringify({ 'version': ver, 'nonce': encrypted.slice(2, 50), 'extra': assocData }); const plaintext = await sodium.crypto_aead_xchacha20poly1305_ietf_decrypt( ciphertext, nonce, key, aad ); return plaintext.toString('utf-8');}
Under-the-hood, this is using XChaCha20-Poly1305, which is less sensitive to timing leaks than AES-GCM. However, like AES-GCM, this encryption mode doesn’t provide message- or key-commitment.
If you want key commitment, you should derive two keys from $key
using a KDF based on hash functions: One for actual encryption, and the other as a key commitment value.
If you want message commitment, you can use AES-CTR + HMAC-SHA256 or XChaCha20 + BLAKE2b-MAC.
If you want both, ask Taylor Campbell about his BLAKE3-based design.
A modified version of the above code with key-commitment might look like this:
const VERSION = "v2";/** * Derive an encryption key and a commitment hash. * @param {CryptographyKey} key * @param {Uint8Array} nonce * @returns {{encKey: CryptographyKey, commitment: Uint8Array}} */async function deriveKeys(key, nonce) { const encKey = new CryptographyKey(await sodium.crypto_generichash( new Uint8Array([0x01].append(nonce)), key )); const commitment = await sodium.crypto_generichash( new Uint8Array([0x02].append(nonce)), key ); return {encKey, commitment};}/** * @param {string|Uint8Array} message * @param {Uint8Array} key * @param {string|null} assocData * @returns {string} */async function encryptData(message, key, assocData = null) { const nonce = await sodium.randombytes_buf(24); const aad = JSON.stringify({ 'version': VERSION, 'nonce': await sodium.sodium_bin2hex(nonce), 'extra': assocData }); const {encKey, commitment} = await deriveKeys(key, nonce); const encrypted = await sodium.crypto_aead_xchacha20poly1305_ietf_encrypt( message, nonce, encKey, aad ); return ( VERSION + await sodium.sodium_bin2hex(nonce) + await sodium.sodium_bin2hex(commitment) + await sodium.sodium_bin2hex(encrypted) );}/** * @param {string|Uint8Array} message * @param {Uint8Array} key * @param {string|null} assocData * @returns {string} */async function decryptData(encrypted, key, assocData = null) { const ver = encrypted.slice(0, 2); if (!await sodium.sodium_memcmp(ver, VERSION)) { throw new Error("Incorrect version: " + ver); } const nonce = await sodium.sodium_hex2bin(encrypted.slice(2, 50)); const ciphertext = await sodium.sodium_hex2bin(encrypted.slice(114)); const aad = JSON.stringify({ 'version': ver, 'nonce': encrypted.slice(2, 50), 'extra': assocData }); const storedCommitment = await sodium.sodium_hex2bin(encrypted.slice(50, 114)); const {encKey, commitment} = await deriveKeys(key, nonce); if (!(await sodium.sodium_memcmp(storedCommitment, commitment))) { throw new Error("Incorrect commitment value"); } const plaintext = await sodium.crypto_aead_xchacha20poly1305_ietf_decrypt( ciphertext, nonce, encKey, aad ); return plaintext.toString('utf-8');}
Another design choice you might make is to encode ciphertext with base64 instead of hexadecimal. That doesn’t significantly alter the design here, but it does mean your decoding logic has to accommodate this.
You SHOULD version your ciphertexts, and include this in the AAD provided to your AEAD encryption mode. I used “v1” and “v2” as a version string above, but you can use your software name for that too.
II. Key Agreement
If you’re not familiar with Elliptic Curve Diffie-Hellman or Authenticated Key Exhcanges, the two of the earliest posts on this blog were dedicated to those topics.
Key agreement in libsodium uses Elliptic Curve Diffie-Hellman over Curve25519, or X25519 for short.
There are many schools of thought for extending ECDH into an authenticated key exchange protocol.
We’re going to implement what the Signal Protocol calls X3DH instead of doing some interactive EdDSA + ECDH hybrid, because X3DH provides cryptographic deniability (see this section of the X3DH specification for more information).
For the moment, I’m going to assume a client-server model. That may or may not be appropriate for your design. You can substitute “the server” for “the other participant” in a peer-to-peer configuration.
Head’s up: This section of the blog post is code-heavy.
Update (November 23, 2020): I implemented this design in TypeScript, if you’d like something tangible to work with. I call my library, Rawr X3DH.
X3DH Pre-Key Bundles
Each participant will need to upload an Ed25519 identity key once (which is a detail covered in another section), which will be used to sign bundles of X25519 public keys to use for X3DH.
Your implementation will involve a fair bit of boilerplate, like so:
/** * Generate an X25519 keypair. * * @returns {{secretKey: X25519SecretKey, publicKey: X25519PublicKey}} */async function generateKeyPair() { const keypair = await sodium.crypto_box_keypair(); return { secretKey: await sodium.crypto_box_secretkey(keypair), publicKey: await sodium.crypto_box_publickey(keypair) };}/** * Generates some number of X25519 keypairs. * * @param {number} preKeyCount * @returns {{secretKey: X25519SecretKey, publicKey: X25519PublicKey}[]} */async function generateBundle(preKeyCount = 100) { const bundle = []; for (let i = 0; i < preKeyCount; i++) { bundle.push(await generateKeyPair()); } return bundle;}/** * BLAKE2b( len(PK) | PK_0, PK_1, ... PK_n ) * * @param {X25519PublicKey[]} publicKeys * @returns {Uint8Array} */async function prehashPublicKeysForSigning(publicKeys) { const hashState = await sodium.crypto_generichash_init(); // First, update the state with the number of public keys const pkLen = new Uint8Array([ (publicKeys.length >>> 24) & 0xff, (publicKeys.length >>> 16) & 0xff, (publicKeys.length >>> 8) & 0xff, publicKeys.length & 0xff ]); await sodium.crypto_generichash_update(hashState, pkLen); // Next, update the state with each public key for (let pk of publicKeys) { await sodium.crypto_generichash_update( hashState, pk.getBuffer() ); } // Return the finalized BLAKE2b hash return await sodium.crypto_generichash_final(hashState);}/** * Signs a bundle. Returns the signature. * * @param {Ed25519SecretKey} signingKey * @param {X25519PublicKey[]} publicKeys * @returns {Uint8Array} */async function signBundle(signingKey, publicKeys) { return sodium.crypto_sign_detached( await prehashPublicKeysForSigning(publicKeys), signingKey );}/** * This is just so you can see how verification looks. * * @param {Ed25519PublicKey} verificationKey * @param {X25519PublicKey[]} publicKeys * @param {Uint8Array} signature */async function verifyBundle(verificationKey, publicKeys, signature) { return sodium.crypto_sign_verify_detached( await prehashPublicKeysForSigning(publicKeys), verificationKey, signature );}
This boilerplate exists just so you can do something like this:
/** * Generate some number of X25519 keypairs. * Persist the bundle. * Sign the bundle of publickeys with the Ed25519 secret key. * Return the signed bundle (which can be transmitted to the server.) * * @param {Ed25519SecretKey} signingKey * @param {number} numKeys * @returns {{signature: string, bundle: string[]}} */async function x3dh_pre_key(signingKey, numKeys = 100) { const bundle = await generateBundle(numKeys); const publicKeys = bundle.map(x => x.publicKey); const signature = await signBundle(signingKey, publicKeys); // This is a stub; how you persist it is app-specific: persistBundleNotDefinedHere(signingKey, bundle); // Hex-encode all the public keys const encodedBundle = []; for (let pk of publicKeys) { encodedBundle.push(await sodium.sodium_bin2hex(pk.getBuffer())); } return { 'signature': await sodium.sodium_bin2hex(signature), 'bundle': encodedBundle };}
And then you can drop the output of x3dh_pre_key(secretKey)
into a JSON-encoded HTTP request.
In accordance to Signal’s X3DH spec, you want to use x3dh_pre_key(secretKey, 1)
to generate the “signed pre-key” bundle and x3dn_pre_key(secretKey, 100)
when pushing 100 one-time keys to the server.
X3DH Initiation
This section conforms to the Sending the Initial Message section of the X3DH specification.
When you initiate a conversation, the server should provide you with a bundle containing:
- Your peer’s Identity key (an Ed25519 public key)
- Your peer’s current Signed Pre-Key (an X25519 public key)
- (If any remain unburned) One of your key’s One-Time Keys (an X25519 public key) — and then delete it
If we assume the structure of this response looks like this:
{ "IdentityKey": "...", "SignedPreKey": { "Signature": "..." "PreKey": "..." }, "OneTimeKey": "..." // or NULL}
Then we can write the initiation step of the handshake like so:
/** * Get SK for initializing an X3DH handshake * * @param {object} r -- See previous code block * @param {Ed25519SecretKey} senderKey */async function x3dh_initiate_send_get_sk(r, senderKey) { const identityKey = new Ed25519PublicKey( await sodium.sodium_hex2bin(r.IdentityKey) ); const signedPreKey = new X25519PublicKey( await sodium.sodium_hex2bin(r.SignedPreKey.PreKey) ); const signature = await sodium.sodium_hex2bin(r.SignedPreKey.Signature); // Check signature const valid = await verifyBundle(identityKey, [signedPreKey], signature); if (!valid) { throw new Error("Invalid signature"); } const ephemeral = await generateKeyPair(); const ephSecret = ephemeral.secretKey; const ephPublic = ephemeral.publicKey; // Turn the Ed25519 keys into X25519 keys for X3DH: const senderX = await sodium.crypto_sign_ed25519_sk_to_curve25519(senderKey); const recipientX = await sodium.crypto_sign_ed25519_pk_to_curve25519(identityKey); // See the X3DH specification to really understand this part: const DH1 = await sodium.crypto_scalarmult(senderX, signedPreKey); const DH2 = await sodium.crypto_scalarmult(ephSecret, recipientX); const DH3 = await sodium.crypto_scalarmult(ephSecret, signedPreKey); let SK; if (r.OneTimeKey) { let DH4 = await sodium.crypto_scalarmult( ephSecret, new X25519PublicKey(await sodium.sodium_hex2bin(r.OneTimeKey)) ); SK = kdf(new Uint8Array( [].concat(DH1.getBuffer()) .concat(DH2.getBuffer()) .concat(DH3.getBuffer()) .concat(DH4.getBuffer()) )); DH4.wipe(); } else { SK = kdf(new Uint8Array( [].concat(DH1.getBuffer()) .concat(DH2.getBuffer()) .concat(DH3.getBuffer()) )); } // Wipe keys DH1.wipe(); DH2.wipe(); DH3.wipe(); ephSecret.wipe(); senderX.wipe(); return { IK: identityKey, EK: ephPublic, SK: SK, OTK: r.OneTimeKey // might be NULL };}/** * Initialize an X3DH handshake * * @param {string} recipientIdentity - Some identifier for the user * @param {Ed25519SecretKey} secretKey - Sender's secret key * @param {Ed25519PublicKey} publicKey - Sender's public key * @param {string} message - The initial message to send * @returns {object} */async function x3dh_initiate_send(recipientIdentity, secretKey, publicKey, message) { const r = await get_server_response(recipientIdentity); const {IK, EK, SK, OTK} = await x3dh_initiate_send_get_sk(r, secretKey); const assocData = await sodium.sodium_bin2hex( new Uint8Array( [].concat(publicKey.getBuffer()) .concat(IK.getBuffer()) ) ); /* * We're going to set the session key for our recipient to SK. * This might invoke a ratchet. * * Either SK or the output of the ratchet derived from SK * will be returned by getEncryptionKey(). */ await setSessionKey(recipientIdentity, SK); const encrypted = await encryptData( message, await getEncryptionKey(recipientIdentity), assocData ); return { "Sender": my_identity_string, "IdentityKey": await sodium.sodium_bin2hex(publicKey), "EphemeralKey": await sodium.sodium_bin2hex(EK), "OneTimeKey": OTK, "CipherText": encrypted };}
We didn’t define setSessionKey()
or getEncryptionKey()
above. It will be covered later.
X3DH – Receiving an Initial Message
This section implements the Receiving the Initial Message section of the X3DH Specification.
We’re going to assume the structure of the request looks like this:
{ "Sender": "...", "IdentityKey": "...", "EphemeralKey": "...", "OneTimeKey": "...", "CipherText": "..."}
The code to handle this should look like this:
/** * Handle an X3DH initiation message as a receiver * * @param {object} r -- See previous code block * @param {Ed25519SecretKey} identitySecret * @param {Ed25519PublicKey} identityPublic * @param {Ed25519SecretKey} preKeySecret */async function x3dh_initiate_recv_get_sk( r, identitySecret, identityPublic, preKeySecret) { // Decode strings const senderIdentityKey = new Ed25519PublicKey( await sodium.sodium_hex2bin(r.IdentityKey), ); const ephemeral = new X25519PublicKey( await sodium.sodium_hex2bin(r.EphemeralKey), ); // Ed25519 -> X25519 const senderX = await sodium.crypto_sign_ed25519_pk_to_curve25519(senderIdentityKey); const recipientX = await sodium.crypto_sign_ed25519_sk_to_curve25519(identitySecret); // See the X3DH specification to really understand this part: const DH1 = await sodium.crypto_scalarmult(preKeySecret, senderX); const DH2 = await sodium.crypto_scalarmult(recipientX, ephemeral); const DH3 = await sodium.crypto_scalarmult(preKeySecret, ephemeral); let SK; if (r.OneTimeKey) { let DH4 = await sodium.crypto_scalarmult( await fetchAndWipeOneTimeSecretKey(r.OneTimeKey), ephemeral ); SK = kdf(new Uint8Array( [].concat(DH1.getBuffer()) .concat(DH2.getBuffer()) .concat(DH3.getBuffer()) .concat(DH4.getBuffer()) )); DH4.wipe(); } else { SK = kdf(new Uint8Array( [].concat(DH1.getBuffer()) .concat(DH2.getBuffer()) .concat(DH3.getBuffer()) )); } // Wipe keys DH1.wipe(); DH2.wipe(); DH3.wipe(); recipientX.wipe(); return { Sender: r.Sender, SK: SK, IK: senderIdentityKey };}/** * Initiate an X3DH handshake as a recipient * * @param {object} req - Request object * @returns {string} - The initial message */async function x3dh_initiate_recv(req) { const {identitySecret, identityPublic} = await getIdentityKeypair(); const {preKeySecret, preKeyPublic} = await getPreKeyPair(); const {Sender, SK, IK} = await x3dh_initiate_recv_get_sk( req, identitySecret, identityPublic, preKeySecret, preKeyPublic ); const assocData = await sodium.sodium_bin2hex( new Uint8Array( [].concat(IK.getBuffer()) .concat(identityPublic.getBuffer()) ) ); try { await setSessionKey(senderIdentity, SK); return decryptData( req.CipherText, await getEncryptionKey(senderIdentity), assocData ); } catch (e) { await destroySessionKey(senderIdentity); throw e; }}
And with that, you’ve successfully implemented X3DH and symmetric encryption in JavaScript.
We abstracted some of the details away (i.e. kdf()
, the transport mechanisms, the session key management mechanisms, and a few others). Some of them will be highly specific to your application, so it doesn’t make a ton of sense to flesh them out.
One thing to keep in mind: According to the X3DH specification, participants should regularly (e.g. weekly) replace their Signed Pre-Key in the server with a fresh one. They should also publish more One-Time Keys when they start to run low.
If you’d like to see a complete reference implementation of X3DH, as I mentioned before, Rawr-X3DH implements it in TypeScript.
Session Key Management
Using X3DH to for every message is inefficient and unnecessary. Even the Signal Protocol doesn’t do that.
Instead, Signal specifies a Double Ratchet protocol that combines a Symmetric-Key Ratchet on subsequent messages, and a Diffie-Hellman-based ratcheting protocol.
Signal even specifies integration guidelines for the Double Ratchet with X3DH.
It’s worth reading through the specification to understand their usages of Key-Derivation Functions (KDFs) and KDF Chains.
Although it is recommended to use HKDF as the Signal protocol specifies, you can strictly speaking use any secure keyed PRF to accomplish the same goal.
What follows is an example of a symmetric KDF chain that uses BLAKE2b with 512-bit digests of the current session key; the leftmost half of the BLAKE2b digest becomes the new session key, while the rightmost half becomes the encryption key.
const SESSION_KEYS = {};/** * Note: In reality you'll want to have two separate sessions: * One for receiving data, one for sending data. * * @param {string} identity * @param {CryptographyKey} key */async function setSessionKey(identity, key) { SESSION_KEYS[identity] = key;}async function getEncryptionKey(identity) { if (!SESSION_KEYS[identity]) { throw new Error("No session key for " + identity"); } const blake2bMac = await sodium.crypto_generichash( SESSION_KEYS[identity], null, 64 ); SESSION_KEYS[identity] = new CryptographyKey(blake2bMac.slice(0, 32)); return new CryptographyKey(blake2bMac.slice(32, 64));}
In the interest of time, a full DHRatchet implementation is left as an exercise to the reader (since it’s mostly a state machine), but using the appropriate functions provided by sodium-plus (crypto_box_keypair()
, crypto_scalarmult()
) should be relatively straightforward.
Make sure your KDFs use domain separation, as per the Signal Protocol specifications.
Group Key Agreement
The Signal Protocol specified X3DH and the Double Ratchet for securely encrypting information between two parties.
Group conversations are trickier, because you have to be able to encrypt information that multiple recipients can decrypt, add/remove participants to the conversation, etc.
(The same complexity comes with multi-device support for end-to-end encryption.)
The best design I’ve read to date for tackling group key agreement is the IETF Messaging Layer Security RFC draft.
I am not going to implement the entire MLS RFC in this blog post. If you want to support multiple devices or group conversations, you’ll want a complete MLS implementation to work with.
Brief Recap
That was a lot of ground to cover, but we’re not done yet.
(Art by Khia.)
So far we’ve tackled encryption, initial key agreement, and session key management. However, we did not flesh out how Identity Keys (which are signing keys–Ed25519 specifically–rather than Diffie-Hellman keys) are managed. That detail was just sorta hand-waved until now.
So let’s talk about that.
III. Identity Key Management
There’s a meme among technology bloggers to write a post titled “Falsehoods Programmers Believe About _____”.
Fortunately for us, Identity is one of the topics that furries are positioned to understand better than most (due to fursonas): Identities have a many-to-many relationship with Humans.
In an end-to-end encryption protocol, each identity will consist of some identifier (phone number, email address, username and server hostname, etc.) and an Ed25519 keypair (for which the public key will be published).
But how do you know whether or not a given public key is correct for a given identity?
This is where we segue into one of the hard problems in cryptography, where the solutions available are entirely dependent on your threat model: Public Key Infrastructure (PKI).
Some common PKI designs include:
- Certificate Authorities (CAs) — TLS does this
- Web-of-Trust (WoT) — The PGP ecosystem does this
- Trust On First Use (TOFU) — SSH does this
- Key Transparency / Certificate Transparency (CT) — TLS also does this for ensuring CA-issued certificates are auditable (although it was originally meant to replace Certificate Authorities)
And you can sort of choose-your-own-adventure on this one, depending on what’s most appropriate for the type of software you’re building and who your customers are.
One design I’m particularly fond of is called Gossamer, which is a PKI design without Certificate Authorities, originally designed for making WordPress’s automatic updates more secure (i.e. so every developer can sign their theme and plugin updates).
Since we only need to maintain an up-to-date repository of Ed25519 identity keys for each participant in our end-to-end encryption protocol, this makes Gossamer a suitable starting point.
Gossamer specifies a limited grammar of Actions that can be performed: AppendKey, RevokeKey, AppendUpdate, RevokeUpdate, and AttestUpdate. These actions are signed and published to an append-only cryptographic ledger.
I would propose a sixth action: AttestKey, so you can have WoT-like assurances and key-signing parties. (If nothing else, you should be able to attest that the identity keys of other cryptographic ledgers in the network are authentic at a point in time.)
IV. Backdoor Resistance
In the previous section, I proposed the use of Gossamer as a PKI for Identity Keys. This would provide Ed25519 keypairs for use with X3DH and the Double Ratchet, which would in turn provide session keys to use for symmetric authenticated encryption.
If you’ve implemented everything preceding this section, you have a full-stack end-to-end encryption protocol. But let’s make intelligence agencies and surveillance capitalists even more mad by making it impractical to backdoor our software (and impossible to silently backdoor it).
How do we pull that off?
You want Binary Transparency.
For us, the implementation is simple: Use Gossamer as it was originally intended (i.e. to secure your software distribution channels).
Gossamer provides up-to-date verification keys and a commitment to a cryptographic ledger of every software update. You can learn more about its inspiration here.
It isn’t enough to merely use Gossamer to manage keys and update signatures. You need independent third parties to use the AttestUpdate action to assert one or more of the following:
- That builds are reproducible from the source code.
- That they have reviewed the source code and found no evidence of backdoors or exploitable vulnerabilities.
(And then you should let your users decide which of these independent third parties they trust to vet software updates.)
Closing Remarks
The U.S. Government cries and moans a lot about “criminals going dark” and wonders a lot about how to solve the “going dark problem”.
If more software developers implement end-to-end encryption in their communications software, then maybe one day they won’t be able to use dragnet surveillance to spy on citizens and they’ll be forced to do actual detective work to solve actual crimes.
Y’know, like their job description actually entails?
Let’s normalize end-to-end encryption. Let’s normalize backdoor-resistant software distribution.
Let’s collectively tell the intelligence community in every sophisticated nation state the one word they don’t hear often enough:
Especially if you’re a furry. Because we improve everything! :3
Questions You Might Have
What About Private Contact Discovery?
That’s one of the major reasons why the thing we’re building isn’t meant to compete with Signal (and it MUST NOT be advertised as such):
Signal is a privacy tool, and their servers have no way of identifying who can contact who.
What we’ve built here isn’t a complete privacy solution, it’s only providing end-to-end encryption (and possibly making NSA employees cry at their desk).
Does This Design Work with Federation?
Yes. Each identifier string can be [username] at [hostname].
What About Network Metadata?
If you want anonymity, you want to use Tor.
Why Are You Using Ed25519 Keys for X3DH?
If you only read the key agreement section of this blog post and the fact that I’m passing around Ed25519 public keys seems weird, you might have missed the identity section of this blog post where I suggested piggybacking on another protocol called Gossamer to handle the distribution of Ed25519 public keys. (Gossamer is also beneficial for backdoor resistance in software update distribution, as described in the subsequent section.)
Furthermore, we’re actually using birationally equivalent X25519 keys derived from the Ed25519 keypair for the X3DH step. This is a deviation from what Signal does (using X25519 keys everywhere, then inventing an EdDSA variant to support their usage).
const publicKeyX = await sodium.crypto_sign_ed25519_pk_to_curve25519(foxPublicKey);const secretKeyX = await sodium.crypto_sign_ed25519_sk_to_curve25519(wolfSecretKey);
(Using fox/wolf instead of Alice/Bob, because it’s cuter.)
This design pattern has a few advantages:
- It makes Gossamer integration seamless, which means you can use Ed25519 for identities and still have a deniable X3DH handshake for 1:1 conversations while implementing the rest of the designs proposed.
- This approach to X3DH can be implemented entirely with libsodium functions, without forcing you to write your own cryptography implementations (i.e. for XEdDSA).
The only disadvantages I’m aware of are:
- It deviates from Signal’s core design in a subtle way that means you don’t get to claim the exact same advantages Signal does when it comes to peer review.
- Some cryptographers are distrustful of the use of birationally equivalent X25519 keys from Ed25519 keys (although there isn’t a vulnerability any of them have been able to point me to that doesn’t involve torsion groups–which libsodium’s implementation already avoids).
If these concerns are valid enough to decide against my implementation above, I invite you to talk with cryptographers about your concerns and then propose alternatives.
Has Any of This Been Implemented Already?
You can find implementations for the designs discussed on this blog post below:
- Rawr-X3DH implements X3DH in TypeScript (added 2020-11-23)
I will update this section of the blog post as implementations surface.
https://soatok.blog/2020/11/14/going-bark-a-furrys-guide-to-end-to-end-encryption/
#authenticatedEncryption #authenticatedKeyExchange #crypto #cryptography #encryption #endToEndEncryption #libsodium #OnlinePrivacy #privacy #SecurityGuidance #symmetricEncryption
Zoom recently announced that they were going to make end-to-end encryption available to all of their users–not just customers.https://twitter.com/zoom_us/status/1320760108343652352
This is a good move, especially for people living in countries with inept leadership that failed to address the COVID-19 pandemic and therefore need to conduct their work and schooling remotely through software like Zoom. I enthusiastically applaud them for making this change.
End-to-end encryption, on by default, is a huge win for everyone who uses Zoom. (Art by Khia.)
The end-to-end encryption capability arrives on the heels of their acquisition of Keybase in earlier this year. Hiring a team of security experts and cryptography engineers seems like a good move overall.
Upon hearing this news, I decided to be a good neighbor and take a look at their source code, with the reasoning, “If so many people’s privacy is going to be dependent on Zoom’s security, I might as well make sure they’re not doing something ridiculously bad.”
Except I couldn’t find their source code anywhere online. But they did publish a white paper on Github…
(Art by Khia.)
Disclaimers
What follows is the opinion of some guy on the Internet with a fursona–so whether or not you choose to take it seriously should be informed by this context. It is not the opinion of anyone’s employer, nor is it endorsed by Zoom, etc. Tell your lawyers to calm their nips.More importantly, I’m not here to hate on Zoom for doing a good thing, nor on the security experts that worked hard on making Zoom better for their users. The responsibility of security professionals is to the users, after all.
Also, these aren’t zero-days, so don’t try to lecture me about “responsible” disclosure. (That term is also problematic, by the way.)
Got it? Good. Let’s move on.
(Art by Swizz.)
Bizarre Design Choices in Version 2.3 of Zoom’s E2E White Paper
Note: I’ve altered the screenshots to be white text on a black background, since my blog’s color scheme is darker than a typical academic PDF. You can find the source here.Cryptographic Algorithms
It’s a little weird that they’re calculating a signature over SHA256(Context) || SHA256(M), considering Ed25519 uses SHA512 internally.
It would make just as much sense to sign Context || M directly–or, if pre-hashing large streams is needed, SHA512(Context || M).
At the top of this section, it says it uses libsodium’s
crypto_box
interface. But then they go onto… not actually use it.Instead, they wrote their own protocol using HKDF, two SHA256 hashes, and XChaCha20-Poly1305.
While secure, this isn’t really using the crypto_box interface.
The only part of the libsodium interface that’s being used is
[url=https://github.com/jedisct1/libsodium/blob/927dfe8e2eaa86160d3ba12a7e3258fbc322909c/src/libsodium/crypto_box/curve25519xsalsa20poly1305/box_curve25519xsalsa20poly1305.c#L35-L46]crypto_box_beforenm()[/url]
, which could easily have been a call tocrypto_scalarmult()
instead (since they’re passing the output of the scalar multiplication to HKDF anyway).(Art by Riley.)
Also, the SHA256(a) || SHA256(b) pattern returns. Zoom’s engineers must love SHA256 for some reason.
This time, it’s in the additional associated data for the XChaCha20-Poly1305.
Binding the ciphertext and the signature to the same context string is a sensible thing to do, it’s just the concatenation of SHA256 hashes is a bit weird when SHA512 exists.
Meeting Leader Security Code
Here we see Zoom using the a SHA256 of a constant string (“
Zoombase-1-ClientOnly-MAC-SecurityCode
“) in a construction that tries but fails to be HMAC.And then they concatenate it with the SHA256 hash of the public key (which is already a 256-bit value), and then they hash the whole thing again.
It’s redundant SHA256 all the way down. The redundancy of “MAC” and “SecurityCode” in their constant string is, at least, consistent with the rest of their design philosophy.
It would be a real shame if double-hashing carried the risk of invalidating security proofs, or if the security proof for HMAC required a high Hamming distance of padding constants and this design decision also later saved HMAC from related-key attacks.
Hiding Personal Details
Wait, you’re telling me Zoom was aware of HMAC’s existence this whole time?I give up!
Enough Pointless Dunking, What’s the Takeaway?
None of the design decisions Zoom made that I’ve criticized here are security vulnerabilities, but they do demonstrate an early lack of cryptography expertise in their product design.After all, the weirdness is almost entirely contained in section 3 of their white paper, which describes the “Phase I” of their rollout. So what I’ve pointed out here appears to be mostly legacy cruft that wasn’t risky enough to bother changing in their final design.
The rest of their paper is pretty straightforward and pleasant to read. Their design makes sense in general, and each phase includes an “Areas to Improve” section.
All in all, if you’re worried about the security of Zoom’s E2EE feature, the only thing they can really do better is to publish the source code (and link to it from the whitepaper repository for ease-of-discovery) for this feature so independent experts can publicly review it.
However, they seem to be getting a lot of mileage out of the experts on their payroll, so I wouldn’t count on that happening.
https://soatok.blog/2020/10/28/bizarre-design-choices-in-zooms-end-to-end-encryption/
#encryption #endToEndEncryption #zoom
Zoom recently announced that they were going to make end-to-end encryption available to all of their users–not just customers.
https://twitter.com/zoom_us/status/1320760108343652352
This is a good move, especially for people living in countries with inept leadership that failed to address the COVID-19 pandemic and therefore need to conduct their work and schooling remotely through software like Zoom. I enthusiastically applaud them for making this change.
End-to-end encryption, on by default, is a huge win for everyone who uses Zoom. (Art by Khia.)
The end-to-end encryption capability arrives on the heels of their acquisition of Keybase in earlier this year. Hiring a team of security experts and cryptography engineers seems like a good move overall.
Upon hearing this news, I decided to be a good neighbor and take a look at their source code, with the reasoning, “If so many people’s privacy is going to be dependent on Zoom’s security, I might as well make sure they’re not doing something ridiculously bad.”
Except I couldn’t find their source code anywhere online. But they did publish a white paper on Github…
(Art by Khia.)
Disclaimers
What follows is the opinion of some guy on the Internet with a fursona–so whether or not you choose to take it seriously should be informed by this context. It is not the opinion of anyone’s employer, nor is it endorsed by Zoom, etc. Tell your lawyers to calm their nips.
More importantly, I’m not here to hate on Zoom for doing a good thing, nor on the security experts that worked hard on making Zoom better for their users. The responsibility of security professionals is to the users, after all.
Also, these aren’t zero-days, so don’t try to lecture me about “responsible” disclosure. (That term is also problematic, by the way.)
Got it? Good. Let’s move on.
(Art by Swizz.)
Bizarre Design Choices in Version 2.3 of Zoom’s E2E White Paper
Note: I’ve altered the screenshots to be white text on a black background, since my blog’s color scheme is darker than a typical academic PDF. You can find the source here.
Cryptographic Algorithms
It’s a little weird that they’re calculating a signature over SHA256(Context) || SHA256(M), considering Ed25519 uses SHA512 internally.
It would make just as much sense to sign Context || M directly–or, if pre-hashing large streams is needed, SHA512(Context || M).
At the top of this section, it says it uses libsodium’s crypto_box
interface. But then they go onto… not actually use it.
Instead, they wrote their own protocol using HKDF, two SHA256 hashes, and XChaCha20-Poly1305.
While secure, this isn’t really using the crypto_box interface.
The only part of the libsodium interface that’s being used is [url=https://github.com/jedisct1/libsodium/blob/927dfe8e2eaa86160d3ba12a7e3258fbc322909c/src/libsodium/crypto_box/curve25519xsalsa20poly1305/box_curve25519xsalsa20poly1305.c#L35-L46]crypto_box_beforenm()[/url]
, which could easily have been a call to crypto_scalarmult()
instead (since they’re passing the output of the scalar multiplication to HKDF anyway).
(Art by Riley.)
Also, the SHA256(a) || SHA256(b) pattern returns. Zoom’s engineers must love SHA256 for some reason.
This time, it’s in the additional associated data for the XChaCha20-Poly1305.
Binding the ciphertext and the signature to the same context string is a sensible thing to do, it’s just the concatenation of SHA256 hashes is a bit weird when SHA512 exists.
Meeting Leader Security Code
Here we see Zoom using the a SHA256 of a constant string (“Zoombase-1-ClientOnly-MAC-SecurityCode
“) in a construction that tries but fails to be HMAC.
And then they concatenate it with the SHA256 hash of the public key (which is already a 256-bit value), and then they hash the whole thing again.
It’s redundant SHA256 all the way down. The redundancy of “MAC” and “SecurityCode” in their constant string is, at least, consistent with the rest of their design philosophy.
It would be a real shame if double-hashing carried the risk of invalidating security proofs, or if the security proof for HMAC required a high Hamming distance of padding constants and this design decision also later saved HMAC from related-key attacks.
Hiding Personal Details
Wait, you’re telling me Zoom was aware of HMAC’s existence this whole time?
I give up!
Enough Pointless Dunking, What’s the Takeaway?
None of the design decisions Zoom made that I’ve criticized here are security vulnerabilities, but they do demonstrate an early lack of cryptography expertise in their product design.
After all, the weirdness is almost entirely contained in section 3 of their white paper, which describes the “Phase I” of their rollout. So what I’ve pointed out here appears to be mostly legacy cruft that wasn’t risky enough to bother changing in their final design.
The rest of their paper is pretty straightforward and pleasant to read. Their design makes sense in general, and each phase includes an “Areas to Improve” section.
All in all, if you’re worried about the security of Zoom’s E2EE feature, the only thing they can really do better is to publish the source code (and link to it from the whitepaper repository for ease-of-discovery) for this feature so independent experts can publicly review it.
However, they seem to be getting a lot of mileage out of the experts on their payroll, so I wouldn’t count on that happening.
https://soatok.blog/2020/10/28/bizarre-design-choices-in-zooms-end-to-end-encryption/
#encryption #endToEndEncryption #zoom
As America prepares for record-breaking infection statistics on a daily basis, many of us are looking at other countries safely reopening and wondering, “Why can’t we have nice things?”What you see if you type “COVID-19 statistics” into a search engine. Data sourced from Wikipedia.
Of course, everyone has their favorite target to blame for this catastrophe. Democrats blame Republicans. Republicans blame Democrats.
I’m not interested in blame. Regardless of who takes the blame in the end, the responsibility for fixing this problem is shared among everyone. Instead, I’m more interested in answering the “Why?” question.
Why Did Things Get This Bad?
Art by circuitslime.There are a lot of popular theories–many of them politically useful–about why the COVID-19 crisis is particularly bad in the United States.
A Failure of Trump’s Leadership?
Let’s get this one out of the way:Was the current hellscape we found ourselves in a direct consequence of Donald J Trump’s failure to ethically and responsibly use his power as President of the United States in the best interest of the people?
https://www.youtube.com/embed/svrxYLvJYto?feature=oembed
“It’ll miraculously go away in April!” – Morons
It’s certain that Trump has totally failed at leadership, but I don’t think that’s a satisfactory explanation for the current crisis.https://www.youtube.com/embed/s9vzT-0hchw?feature=oembed
That is not to say that Trump is without fault! Just that the problem is bigger than one idiot in a three piece suit.
Challenges Due to Scale?
A lot of the countries that performed better at responding to COVID-19 had smaller populations and occupied smaller land masses than the United States. Is that a reasonable explanation for why the USA suffers?Per-capita analyses and samples from other countries with similar populations and occupied surface area would be consistent with the USA if that was the reason. This problem is mostly uniquely American.
Are the Protesters at Fault?
COVID-19 has an incubation period of up to two weeks.The first signs of an uptick in COVID-19 infections was visible early into the nationwide Black Lives Matter protests, which implicates an earlier cause. The most likely one was the Memorial Day weekend celebrations that took place before George Floyd’s murder sparked widespread outrage.
Indeed, a further analysis did not show an uptick of COVID-19 infections even 4 weeks into the nationwide protests (which is two incubation periods).
Instead, the sharp spike in COVID-19 infections–factoring in the incubation period–coincided with states reopening their bars and restaurants. (Especially Florida.)
Why Things Are So Bad Today
The problem that America faces is the same one we’ve been faced with for many decades: Rampant Anti-Intellectualism.https://www.youtube.com/embed/bZnBL2dFgyI?feature=oembed
American anti-intellectualism is the juxtaposition of proud ignorance and conspiracy theories.
Let me ask all you female mask wearing ASSHOLES… are you ready to put a burka on next?That mask is NOT about your safety…. it's about MIND CONTROL
The only reason I know masks are worthless is because Andrew Cuomo keeps telling EVERYONE to wear one
Stick it up your ass!
— 🇺🇸🍺TRUMP WON🍺🇺🇸 (@PISDI94_96) June 30, 2020
Tweet is also archived in case it gets deleted.
Anti-intellectualism takes many forms:Every single time y'all tell me you're not ready to submit a talk on a subject you've been researching for months, I want you to think about "I don't actually ride in Ubers" internet-commentator guy. pic.twitter.com/aK2LAcFtzb— Lesley Carhart (@hacks4pancakes) July 1, 2020
People are so willing to die on the hill of their ignorance that even literally dying doesn’t deter them from campaigning for self-destruction.
RIGHT NOW: Dozens are marching in Sanford chanting “My body. My choice.” They are protesting after a mask order went into place in Seminole County today. pic.twitter.com/kMT7EebDKN— Stephanie Buffamonte (@StephBuffamonte) July 1, 2020
The reason that things are so bad in the United States of America boils down to the following:
- Too many Americans are proud to be ignorant, and in many cases, argue in support of “my ignorance is just as good as your facts”.
- Too many Americans are susceptible to bullshit conspiracy theories.
- Too many Americans are so selfish and short-sighted that they’d rather go to bars and waste money they don’t have on alcohol and shallow conversation than save the lives of the people they profess to love and care about.
- Conservative politics and media is a death cult that literally turned “wearing a mask to stop COVID-19” into a culture war issue.
- The people I’ve described in points 1-4 vote in every election, to make sure someone representing their bullshit has a seat at the political table.
It’s far too tempting to scapegoat the sitting President–especially when they’re as terrible as Donald J Trump. But if you do that, you’re ignoring the reason that he’s in the oval office to begin with.
Willful Ignorance Kills
I’ve talked about this before, when I used to write on Medium:
- https://medium.com/@soatok/american-ignorance-in-2020-c72c78d11dbb
- https://medium.com/@soatok/dear-furries-bullshit-and-misinformation-will-hurt-you-4a6f531d62bd
The sole cause for the situation we’re in is the same anti-intellectualism that Isaac Asimov complained about back in 1980.
Even if you want to solely blame Donald Trump, about 40% of Americans currently approve of his presidency (archive).
How to Escape This Hellscape
Art by Swizz.The only way to get out of the mess we’re in today is to stop tolerating ignorance and bullshit in your daily life. (Yes, this means you too, furry fandom! It’s not “all fun and games” anymore.)
That means, at a minimum:
- Not spreading the Myers-Brigg personality test bullshit
- Not giving the anti-LGBTQIA+ bigots at Chick-Fil-A any money
- Listening to experts (this means: SCIENTISTS, not talk show hosts or politicians)
- Being willing to admit “I don’t know” and then being curious enough to seek the truth
- Stop reading or financially supporting biased news media
Even if we manage to get out of the current COVID-19 hellscape without addressing these flaws, the next catastrophe will hit us just as hard.
Can People’s Minds Be Changed?
No. I don’t think most of the willfully ignorant assholes currently living in America that favor Trump’s presidency today are willing and capable of redemption.There will be exceptions, and we should remain open to the possibility of some people coming around, but in general most of these jerks will dig their heels in when pressured.
Instead, we’re going to have to wait for them to die off naturally.
What we can do in the meantime is promote better education for the American kids.
https://www.youtube.com/embed/ILQepXUhJ98?feature=oembed
A nation of enlightened free-thinkers fully capable of critical thought would be a good thing (even if Carlin thinks it will never happen). And we can get there, eventually.
All it takes is everyone deciding to be humble and actually verify what other people tell them (n.b. by referencing reputable sources).
It might not make a difference today, but in 10 or 20 years, a consistent effort to enable younger Americans to become smarter, wiser, and more empathetic than their parents and grandparents will change the political landscape of our country–and maybe even the world–for the better.
Art by Khia
Of course, the Powers That Be know that, which is why we see bullshit like this keep happening during a pandemic:
With a stroke of his veto pen, Gov. Ron DeSantis wiped out the entire $29.4 million budget for a suite of online education services that have become critical to students and faculty during the Covid-19 outbreak https://t.co/6PMop4SIPv— POLITICO (@politico) June 30, 2020
Remember, DeSantis is the governor of the state whose COVID-19 infections-per-day graph looks like this:
You can see a clear data pattern with Florida's COVID-19 with a lull each Sunday. I've computed the baseline for this week (Sunday's numbers) and the last two weeks' increase relative to Sunday. We're easily on track to hit 10,000 new cases Friday-ish, maybe even higher. pic.twitter.com/8pnXF5uEwR— 💙💛 "Dog Boy" Nex' 💙💛 (@NexJql) July 1, 2020
It won’t be easy. Bullshit is everywhere. But it’s doable.
Addendum: A Carnival of Stupid
In case you still had any doubt about the potent lethality of American anti-intellectualism, look no further than this story:Florida teen dies after conspiracy theorist mom takes her to church ‘COVID party’ and tries to treat her with Trump-approved drug: report – https://t.co/Bw3SMVitxx— Jeffrey Levin 🇺🇦 (@jilevin) July 6, 2020
We have to demand better of ourselves before we can demand better of others. But damn if the bar isn’t really, really low to begin with.
I believe someday we'll open up textbooks and find this screenshot under the definition of "cognitive dissonance". pic.twitter.com/n535Obq6SB— 🦊 Ennex is trying this again! 🦊 (@EnnexTheFox) July 7, 2020
The White House Press Secretary on Trump's push to reopen schools: "The science should not stand in the way of this."
— Jim Acosta (@Acosta) July 16, 2020
https://soatok.blog/2020/07/02/how-and-why-america-was-hit-so-hard-by-covid-19/
There seems to be a lot of interest among software developers in the various cryptographic building blocks (block ciphers, hash functions, etc.), and more specifically how they stack up against each other.
Today, we’re going to look at how some symmetric encryption methods stack up against each other.
If you’re just looking for a short list of cryptographic “right answers”, your cheat sheet can be found on Latacora’s blog.
Comparisons
- AES-GCM vs. ChaCha20-Poly1305
- AES-GCM vs. XChaCha20-Poly1305
- AES-GCM vs. AES-CCM
- AES-GCM vs. AES-GCM-SIV
- AES-GCM vs. AES-SIV
- AES-GCM-SIV vs. AES-SIV
- AES-GCM vs. AES-CBC
- AES-GCM vs. AES-CTR
- AES-CBC vs. AES-CTR
- AES-CBC vs. AES-ECB
- AES vs. Blowfish
- ChaCha vs. Salsa20
- ChaCha vs. RC4
- Cipher Cascades
AES-GCM vs. ChaCha20-Poly1305
- If you have hardware acceleration (e.g. AES-NI), then AES-GCM provides better performance. If you do not, AES-GCM is either slower than ChaCha20-Poly1305, or it leaks your encryption keys in cache timing.
- Neither algorithm is message committing, which makes both unsuitable for algorithms like OPAQUE (explanation).
- AES-GCM can target multiple security levels (128-bit, 192-bit, 256-bit), whereas ChaCha20-Poly1305 is only defined at the 256-bit security level.
- Nonce size:
- AES-GCM: Varies, but standard is 96 bits (12 bytes). If you supply a longer nonce, this gets hashed down to 16 bytes.
- ChaCha20-Poly1305: The standardized version uses 96-bit nonces (12 bytes), but the original used 64-bit nonces (8 bytes).
- Wearout of a single (key, nonce) pair:
- AES-GCM: Messages must be less than 2^32 – 2 blocks (a.k.a. 2^36 – 32 bytes, a.k.a. 2^39 – 256 bits). This also makes the security analysis of AES-GCM with long nonces complicated, since the hashed nonce doesn’t start with the lower 4 bytes set to 00 00 00 02.
- ChaCha20-Poly1305: ChaCha has an internal counter (32 bits in the standardized IETF variant, 64 bits in the original design).
- Neither algorithm is nonce misuse resistant.
Conclusion: Both are good options. AES-GCM can be faster with hardware support, but pure-software implementations of ChaCha20-Poly1305 are almost always fast and constant-time.
AES-GCM vs. XChaCha20-Poly1305
- XChaCha20 accepts 192-bit nonces (24 bytes). The first 16 of the nonce are used with the ChaCha key to derive a subkey, and then the rest of this algorithm is the same as ChaCha20-Poly1305.
- To compare AES-GCM and ChaCha20-Poly1305 for encryption, see above.
- The longer nonce makes XChaCha20-Poly1305 better suited for long-lived keys (i.e. application-layer cryptography) than AES-GCM.
Conclusion: If you’re using the same key for a large number of messages, XChaCha20-Poly1305 has a wider safety margin than AES-GCM. Therefore, XChaCha20-Poly1305 should be preferred in those cases.
AES-GCM vs. AES-CCM
AES-GCM is AES in Galois/Counter Mode, AES-CCM is AES in Counter with CBC-MAC mode.
Although I previously stated that AES-GCM is possibly my least favorite AEAD, AES-CCM is decidedly worse: AES-GCM is Encrypt-then-MAC, while AES-CCM is MAC-then-encrypt.
Sure, CCM mode has a security proof that arguably justifies violating the cryptographic doom principle, but I contend the only time it’s worthwhile to do that is when you’re building a nonce-misuse resistant mode (i.e. AES-GCM-SIV).
A lot of cryptography libraries simply don’t even implement AES-CCM; or if they do, it’s disabled by default (i.e. OpenSSL). A notable exception is the Stanford Javascript Cryptography Library, which defaults to AES-CCM + PBKDF2 for encryption.
Conclusion: Just use AES-GCM.
AES-GCM vs. AES-GCM-SIV
AES-GCM-SIV encryption runs at 70% the speed of AES-GCM, but decryption is just as fast. What does this 30% encryption slowdown buy? Nonce misuse resistance.
Nonce misuse resistance is really cool. (Art by Swizz)
The algorithms are significantly different:
- AES-GCM is basically AES-CTR, then GMAC (parameterized by the key and nonce) is applied over the AAD and ciphertext. (Encrypt then MAC)
- AES-GCM-SIV derives two distinct keys from the nonce and key, then uses POLYVAL (which is related to GHASH) over the AAD and message with the first key to generate the tag. Then the tag used to derive a series of AES inputs that, when encrypted with the second key, are XORed with the blocks of the message (basically counter mode). (MAC then Encrypt)
AES-GCM is a simpler algorithm to analyze. AES-GCM-SIV provides a greater safety margin. However, like AES-GCM, AES-GCM-SIV is also vulnerable to the Invisible Salamanders attack.
So really, use which ever you want.
Better security comes from AES-GCM-SIV, better encryption performance comes from AES-GCM. What are your priorities?
https://twitter.com/colmmacc/status/986286693572493312
Conclusion: AES-GCM-SIV is better, but both are fine.
AES-GCM vs. AES-SIV
At the risk of being overly reductionist, AES-SIV is basically a nonce misuse resistant variant of AES-CCM:
- Where AES-CCM uses CBC-MAC, AES-SIV uses CMAC, which is based on CBC-MAC but with a doubling step (left shift then XOR with the round constant).
- AES-SIV is MAC then encrypt (so is AES-CCM).
- AES-SIV uses AES-CTR (so does AES-CCM).
If you need nonce misuse resistance, AES-SIV is a tempting choice, but you’re going to get better performance out of AES-GCM.
AES-GCM also has the added advantage of not relying on CBC-MAC.
Conclusion: Prefer AES-GCM in most threat models, AES-SIV in narrower threat models where nonce misuse is the foremost security risk.
AES-GCM-SIV vs. AES-SIV
If you read the previous two sections, the conclusion here should be obvious.
- AES-GCM-SIV is slightly better than AES-GCM.
- AES-GCM is better than AES-SIV.
Conclusion: Use AES-GCM-SIV.
AES-GCM vs. AES-CBC
Just use AES-GCM. No contest.
AES-GCM is an authenticated encryption mode. It doesn’t just provide confidentiality by encrypting your message, it also provides integrity (which guarantees that nobody tampered with the encrypted message over the wire).
If you select AES-CBC instead of AES-GCM, you’re opening your systems to a type of attack called a padding oracle (which lets attackers decrypt messages without the key, by replaying altered ciphertexts and studying the behavior of your application).
If you must use AES-CBC, then you must also MAC your ciphertext (and the initialization vector–IV for short). You should also devise some sort of key-separation mechanism so you’re not using the same key for two different algorithms. Even something like this is fine:
- encKey := HmacSha256(“encryption-cbc-hmac”, key)
- macKey := HmacSha256(“authentication-cbc-hmac”, key)
- iv := RandomBytes(16)
- ciphertext := AesCbc(plaintext, iv, encKey)
- tag := HmacSha256(iv + ciphertext, macKey)
For decryption you need a secure compare function. If one is not available to you, or you cannot guarantee it will run in constant time, a second HMAC call with a random per-comparison key will suffice.
There is no possible world in which case unauthenticated AES-CBC is a safer choice than AES-GCM.
AES-CBC + HMAC-SHA256 (encrypt then MAC) is message-committing and therefore can be safely used with algorithms like OPAQUE.
The Signal Protocol uses AES-CBC + HMAC-SHA2 for message encryption.
AES-GCM vs. AES-CTR
Just use AES-GCM. No contest.
Unlike AES-GCM, AES-CTR doesn’t provide any message integrity guarantees. However, strictly speaking, AES-GCM uses AES-CTR under the hood.
If you must use AES-CTR, the same rules apply as for AES-CBC:
- encKey := HmacSha256(“encryption-ctr-hmac”, key)
- macKey := HmacSha256(“authentication-ctr-hmac”, key)
- nonce := RandomBytes(16)
- ciphertext := AesCtr(plaintext, nonce, encKey)
- tag := HmacSha256(nonce + ciphertext, macKey)
For decryption you need a secure compare function.
AES-CTR + HMAC-SHA256 (encrypt then MAC) is message-committing and therefore can be safely used with algorithms like OPAQUE.
AES-CBC vs. AES-CTR
If you find yourself trying to decide between CBC mode and CTR mode, you should probably save yourself the headache and just use GCM instead.
That being said:
AES-CTR fails harder than AES-CBC when you reuse an IV/nonce.
AES-CBC requires a padding scheme (e.g. PKCS #7 padding) which adds unnecessary algorithmic complexity.
If you have to decide between the two, and you have a robust extended-nonce key-splitting scheme in place, opt for AES-CTR. But really, unless you’re a cryptography engineer well-versed in the nuances and failure modes of these algorithms, you shouldn’t even be making this choice.
AES-CBC vs. AES-ECB
Never use ECB mode. ECB mode lacks semantic security.
Block cipher modes that support initialization vectors were invented to compensate for this shortcoming.
Conclusion: If you’re trying to decide between these two, you’ve already lost. Rethink your strategy.
AES vs. Blowfish
A lot of OpenVPN configurations in the wild default to Blowfish for encryption. To the authors of these configuration files, I have but one question:
Why?! (Art by Khia)
Sure, you might think, “But Blowfish supports up to 448-bit keys and is therefore more secure than even 256-bit AES.”
Cryptographic security isn’t a dick-measuring contest. Key size isn’t everything. More key isn’t more security.
AES is a block cipher with a 128-bit block size. Blowfish is a block cipher with a 64-bit block size. This means that Blowfish in CBC mode is vulnerable to birthday attacks in a practical setting.
AES has received several orders of magnitude more scrutiny from cryptography experts than Blowfish has.
Conclusion: Use AES instead of Blowfish.
ChaCha vs. Salsa20
Salsa20 is an eSTREAM finalist stream cipher. After years of cryptanalysis, reduced round variants of Salsa20 (specifically, Salsa20/7 with a 128-bit key) were found to be breakable. In response to this, a variant called ChaCha was published that increased the per-round diffusion.
That is to say: ChaCha is generally more secure than Salsa20 with similar or slightly better performance. If you have to choose between the two, go for ChaCha.
Conclusion: Your choice (both are good but ChaCha is slightly better).
ChaCha vs. RC4
Don’t use RC4 for anything! What are you doing?
My reaction when I read that the CIA was using a modified RC4 in their Assassin malware instead of a secure stream cipher, per the Vault7 leaks. (Art by Khia)
RC4 was a stream cipher–allegedly designed by Ron Rivest and leaked onto a mailing list–that has been thoroughly demolished by cryptanalysis. RC4 is not secure and should never be relied on for security.
Conclusion: Use ChaCha. Never use RC4.
Cipher Cascades
A cipher cascade is when you encrypt a message with one cipher, and then encrypt the ciphertext with another cipher, sometimes multiple times. One example: TripleSec by Keybase, which combines AES and Salsa20 (and, formerly, Twofish–an AES finalist).
Cipher cascades don’t meaningfully improve security in realistic threat models. However, if your threat model includes “AES is broken or backdoored by the NSA”, a cipher cascade using AES is safer than just selecting a nonstandard cipher instead of AES. However, they’re necessarily slower than just using AES would be.
If you’re worried about this, your time is better spent worrying about key management, side-channel attacks, and software supply chain attacks.
Conclusion: Avoid cipher cascades, but they’re better than recklessly paranoid alternatives.
Symmetric Encryption Rankings
So with all of the above information, can we rank these algorithms into tiers?
Art by Riley
Sort of! Although it’s based on the above analyses, ranking is inherently subjective. So what follows is entirely the author’s opinion of their relative goodness/badness.
S | XChaCha20-Poly1305, AES-GCM-SIV |
A | AES-GCM, ChaCha20-Poly1305 |
B | AES-SIV |
C | AES-CTR + HMAC-SHA2, AES-CBC + HMAC-SHA2 |
D | AES-CCM |
F | Any: AES-ECB, RC4, Blowfish Unauthenticated: AES-CBC, AES-CTR, Salsa20, ChaCha |
Soatok’s ranking of symmetric encryption methods
https://soatok.blog/2020/07/12/comparison-of-symmetric-encryption-methods/
#AEAD #AES #AESGCM #AESGCMSIV #ChaCha20Poly1305 #ciphers #comparison #cryptography #encryption #NMRAEAD #ranking #SecurityGuidance #streamCiphers #symmetricCryptography #symmetricEncryption #XChaCha20Poly1305
Authenticated Key Exchanges are an interesting and important building block in any protocol that aims to allow people to communicate privately over an untrusted medium (i.e. the Internet).What’s an AKE?
At their core, Authenticated Key Exchanges (AKEs for short) combine two different classes of protocol.
- An authentication mechanism, such as a MAC or a digital signature.
- Key encapsulation, usually through some sort of Diffie-Hellman.
A simple example of an AKE is the modern TLS handshake, which uses digital signatures (X.509 certificates signed by certificate authorities) to sign ephemeral Elliptic Curve Diffie-Hellman (ECDH) public keys, which is then used to derive a shared secret to encrypt and authenticate network traffic.
I guess I should say “simple” with scare quotes. Cryptography is very much a “devil’s in the details” field, because my above explanation didn’t even encapsulate mutual-auth TLS or the underlying machinery of protocol negotiation. (Or the fact that non-forward-secret ciphersuites can be selected.)
AKEs get much more complicated, the more sophisticated your threat model becomes.
For example: Signal’s X3DH and Double Ratchet protocols are components of a very sophisticated AKE. Learn more about them here.
The IETF is working to standardize their own approach, called Messaging Layer Security (MLS), which uses a binary tree of ECDH handshakes to manage state and optimize group operations (called TreeKEM). You can learn more about IETF MLS here.
Password AKEs
Recently, a collection of cryptographers at the IETF’s Crypto Research Forum Group (CFRG) decided to hammer on a series of proposed Password-Authenticated Key Exchange (PAKE) protocols.PAKEs come in two flavors: Balanced (mutually authenticated) and augmented (one side is a prover, the other is a verifier). Balanced PAKEs are good for encrypted tunnels where you control both endpoints (e.g. WiFi networks), whereas Augmented PAKEs are great for eliminating the risk of password theft in client-server applications, if the server gets hacked.
Ultimately, the CFRG settled on one balanced PAKE (CPace) and one augmented PAKE (OPAQUE).
Consequently, cryptographer Filippo Valsorda managed to implement CPace in 125 lines of Go, using Ristretto255.
I implemented the CPace PAKE yesterday with Go and ristretto255, and it felt like cheating.125 lines of code! Really happy with it and it was a lot of fun.
— Filippo Valsorda (@FiloSottile) March 29, 2020
Why So Complicated?
At the end of the day, an AKE is just a construction that combines key encapsulation with an authentication mechanism.But how you combine these components together can vary wildly!
Some AKE designs (i.e. Dragonfly, in WPA3) are weaker than others; even if only in the sense of being difficult to implement in constant-time.
The reason there’s so many is that cryptographers tend to collectively decide which algorithms to recommend for standardization.
(n.b. There are a lot more block ciphers than DES, Blowfish, and AES to choose from! But ask a non-cryptographer to name five block ciphers and they’ll probably struggle.)
https://soatok.blog/2020/04/21/authenticated-key-exchanges/
#ake #authenticatedKeyExchange #cryptography #ECDH
HTTP Signature Infinite Loop?
https://shkspr.mobi/blog/2024/02/http-signature-infinite-loop/
I'm trying to get my head round HTTP Signatures as they're used extensively in the Fediverse.
Conceptually, they're relatively straightforward.
You send me a normal HTTP request. For example, you want to POST something to https://example.com/data
You send me these headers:
POST /dataHost: example.comDate: Sat, 24 Feb 2024 14:43:48 GMTAccept-Encoding: gzipDigest: SHA-256=aaC57TDzM0Wq+50We2TkCsdMDvdqON92edg7KI+Hk8M=Content-Type: application/activity+jsonSignature: keyId="https://your_website.biz/publicKey",algorithm="rsa-sha256",headers="(request-target) host date digest content-type",signature="JGQ53kEoIiMWRp9By9jajVGCOCu4n7XBeiA1uY5xLcnAxL2Y1GIgU/...=="Connection: Keep-AliveContent-Length: 751
In order to verify the contents of the message, I need to do three things:
- Check the SHA-256 hash of the message matches the content of the "Digest" header.
- Check the timestamp is somewhat fresh.
- Check the signature matches.
The first is simple: base64_encode( hash( "sha256", $request_body, true ) )
.
The second is a matter of opinion. I might be happy to receive messages from the distant past or far in the future. For the sake of a little clock drift, let's allow 60 seconds either way.
The third gets complicated.
First, I need to get the public key published at keyId="https://your_website.biz/publicKey"
.
Next, I need to know which algorithm is being used to sign the headers: algorithm="rsa-sha256"
Then, I need to know which headers - and in what order - are being signed: headers="(request-target) host date digest content-type"
So I create a string using the received details which matches those headers in that specific order:
(request-target) POST /dataHost: example.comDate: Sat, 24 Feb 2024 14:43:48 GMTDigest: SHA-256=aaC57TDzM0Wq+50We2TkCsdMDvdqON92edg7KI+Hk8M=Content-Type: application/activity+json
I can verify if the signature -
signature="JGQ53kEoIiMWRp9By9jajVGCOCu4n7XBeiA1uY5xLcnAxL2Y1GIgU/...=="
matches by:openssl_verify( $headersString, $signature, $publicKey, $algorithm);
If that's
TRUE
then all is well.But can you spot the implicit problem?
How do I get your server's public key?
I just GET https://your_website.biz/publicKey - but if your server uses something like Authorised Fetch then I have to sign my request to you.
Which means your server will need to validate my signature by obtaining my public key. Which it will get by signing a request and sending it to me. Which, before I return my public key, I will need to validate your signature by obtaining your public key. Which I will get by signing a request... and so on.
This deadlock loop is documented. The usual way around it is either for the sending server to use an instance-specific signature which can be retrieved by an unsigned request, or to allow any unsigned request to access a user's public key.
I get why things happen this way - I just wish it were easier to implement!
https://shkspr.mobi/blog/2024/02/http-signature-infinite-loop/
#ActivityPub #CyberSecurity #encryption #fediverse #http
HTTP Signature Infinite Loop?
https://shkspr.mobi/blog/2024/02/http-signature-infinite-loop/I'm trying to get my head round HTTP Signatures as they're used extensively in the Fediverse.
Conceptually, they're relatively straightforward.
You send me a normal HTTP request. For example, you want to POST something to https://example.com/data
You send me these headers:
POST /dataHost: example.comDate: Sat, 24 Feb 2024 14:43:48 GMTAccept-Encoding: gzipDigest: SHA-256=aaC57TDzM0Wq+50We2TkCsdMDvdqON92edg7KI+Hk8M=Content-Type: application/activity+jsonSignature: keyId="https://your_website.biz/publicKey",algorithm="rsa-sha256",headers="(request-target) host date digest content-type",signature="JGQ53kEoIiMWRp9By9jajVGCOCu4n7XBeiA1uY5xLcnAxL2Y1GIgU/...=="Connection: Keep-AliveContent-Length: 751
In order to verify the contents of the message, I need to do three things:
- Check the SHA-256 hash of the message matches the content of the "Digest" header.
- Check the timestamp is somewhat fresh.
- Check the signature matches.
The first is simple:
base64_encode( hash( "sha256", $request_body, true ) )
.
The second is a matter of opinion. I might be happy to receive messages from the distant past or far in the future. For the sake of a little clock drift, let's allow 60 seconds either way.
The third gets complicated.First, I need to get the public key published at
keyId="https://your_website.biz/publicKey"
.Next, I need to know which algorithm is being used to sign the headers:
algorithm="rsa-sha256"
Then, I need to know which headers - and in what order - are being signed:
headers="(request-target) host date digest content-type"
So I create a string using the received details which matches those headers in that specific order:
(request-target) POST /dataHost: example.comDate: Sat, 24 Feb 2024 14:43:48 GMTDigest: SHA-256=aaC57TDzM0Wq+50We2TkCsdMDvdqON92edg7KI+Hk8M=Content-Type: application/activity+json
I can verify if the signature -signature="JGQ53kEoIiMWRp9By9jajVGCOCu4n7XBeiA1uY5xLcnAxL2Y1GIgU/...=="
matches by:openssl_verify( $headersString, $signature, $publicKey, $algorithm);
If that'sTRUE
then all is well.But can you spot the implicit problem?
How do I get your server's public key?
I just GET https://your_website.biz/publicKey - but if your server uses something like Authorised Fetch then I have to sign my request to you.
Which means your server will need to validate my signature by obtaining my public key. Which it will get by signing a request and sending it to me. Which, before I return my public key, I will need to validate your signature by obtaining your public key. Which I will get by signing a request... and so on.
This deadlock loop is documented. The usual way around it is either for the sending server to use an instance-specific signature which can be retrieved by an unsigned request, or to allow any unsigned request to access a user's public key.
I get why things happen this way - I just wish it were easier to implement!
https://shkspr.mobi/blog/2024/02/http-signature-infinite-loop/
#ActivityPub #CyberSecurity #encryption #fediverse #http
Authorized Fetch and the Instance Actor
Using an instance actor for mitigating the authorized fetch key retrieval bug seems strange to me so I dug into the historical record to try to understand how this all evolved.SocialHub
1/2 🚨Today, we’re welcoming in Brussels @signalapp's @Mer__edith, @CommissionerHR @dunja_mijatovic & @epfl's @carmelatroncoso among other experts & policymakers to discuss #encryption & privacy.
We're also pleased to have @cdteurope's Iverna McGowan moderate the discussion 🌟 & to hear from Noémie Levain, Legal Expert at @LaQuadrature, Beatriz Ramalho da Silva, Investigative Journalist at @lhreports & Bart Staszewski LGBTI+ activist, founder and chairman of Basta Fundacja 🤩
Standardized, interoperable #encryption is key for a better internet.
Proton and the @ietf OpenPGP Working Group are pleased to announce a crypto refresh of the #OpenPGP standard. Standardization today ensures interoperability tomorrow.
More here ➡️ https://proton.me/blog/openpgp-crypto-refresh.
Modernizing and improving PGP security
Daniel Huigens, the head of Proton’s cryptography team, explains how the latest crypto refresh makes PGP more secure.Daniel Huigens (Proton)
“We should ban doors!” 🚫🚪
Sometimes criminals hide weapons under their clothes.
“We should ban clothes!” 🚫👖
🙃
Do not fall for these misguided arguments.
Most of the time people use end-to-end encrypted apps to talk about the most mundane things.
Sometimes vulnerable people use end-to-end encryption to protect themselves and stay safe.
We should keep and cherish encryption.
We should demand it everywhere.
End-to-end encryption protects our human right to privacy and safety.
We must fight for it! ✊🔒
#RootForE2EE #E2EE #Encryption #Privacy
• any #Fediverse self-hosted instance as easy to set up as a Facebook account
• #Fediverse must easily straddle;
- PRIVATE
consumer individual family safe spaces
#privacy #encryption
– OPENWEB
shared public resource, common carrier status,
actual virtual-public-square not #Elmo absolutist illusion w/corp asses covered by #Section230
• SysAdmin a pain = opportunity
• market for #Privacy enabled
• new Laws needed, incumbents will resist
All this - and more - in the latest episode of the award-winning "Smashing Security" podcast, with me, Carole Theriault, and special guest Mark Stockley.
Thanks to our sponsors @bitwarden, NordLayer, and SecurEnvoy for their support!
https://grahamcluley.com/smashing-security-podcast-308/
#cybersecurity #podcast #ubiquti #databreach #apple #encryption #privacy
Smashing Security podcast #308: Jail after VPN fail, criminal messaging apps, and wolf-crying watches
When Ubiquiti suffered a hack the world assumed it was just a regular security breach, but the truth was much stranger… why are police happy that criminals…Graham Cluley
People have to make a decision. You can only choose one.
Do you want freedom / human autonomy?
Or do you want pretend safety?
Ben Franklin quote:
"Those who would give up essential Liberty, to purchase a little temporary Safety, deserve neither Liberty nor Safety."
Thomas Jefferson: "I prefer dangerous freedom over peaceful slavery"
#privacy #humanRights #autonomy #massSurveillance #crypto #e2ee #Signal #encryption quote
https://www.nytimes.com/2022/12/28/opinion/jack-dorseys-twitter-signal-privacy.html
#Encryption alone is not #security, but its implementation, and some do it better and others just badly. If the single point of #failure is vulnerable, the rest is usually useless 😉
Please do not fall for #buzzwords and the associated #advertising promises 🙏
7ha7'5 WHy m4nY Phr33 4ND oP3n 5OURc3 5Of7w4R3 U2e 3NCryP7ION t0 al73r 7ex7 1n70 4 d1ff3r3n7 unr34d4bl3 phoRm@.
Wi7H pHO55 73CHnoLO9Y i H4v3 3ncRYp73D 7HI2 po57 IN 4n 4nci3N7 l337 73CHNo-L4N9U493 (13375p34k) 7O pRO73c7 7h15 M355ag3 PhROM 7ox1c aNd NaZ1 U53R5, ANd 5hOW how N3C3554Ry 7h15 15 1n 7he m0d3rn 3ra.
45 0f n0w, n0 f3d1v3r53 5oF7w4r3 5upPoR72 3ncRyP73d p0575, bu7 I'M 5UR3 IN dU3 7IM3 oUr D34R l34d3R G4GRON 5h4Ll 4N5w3R oUr pr4y3r5!
#FediTips#encryption#leetspeak#Fediverse
https://youtu.be/F3_Y02A53Zc
#matrix #element #decentralization #encryption #webassembly #nodejs #javascript
Matrix Live S07E24 — NodeJS and WASM Bindings for the Rust SDK
Ivan worked on NodeJS and WASM bindings for the rust SDK. What do these words mean? Let's find out! Le menu du jour is in la description ⏬00:00 Hello01:26 Is...YouTube
We all want a secure and trustworthy Internet. In ‘A Digital Dystopia’, @denisersalmeida@twitter.com from @element_hq@twitter.com explains why stopping calls for #encryption backdoors is critical to keeping the world safe online. 🔒
https://www.internetsociety.org/blog/2021/04/a-digital-dystopia-how-calls-for-backdoors-to-encryption-would-ruin-the-internet-for-everyone/
🐦🔗: https://twitter.com/internetsociety/status/1387083635505864707
We're featuring @element_hq@twitter.com as our monthly hot #startup to watch. Meet the founders; learn why.
https://thestack.technology/element-messenger-matrix-protocol-one-to-watch/ #startups #privatemessengers #encryption #opensource #Matrix
🐦🔗: https://twitter.com/StackPublishing/status/1379700799325024257